Allosteric conversation in the androgen receptor ligand-binding domain surfaces.
نویسندگان
چکیده
Androgen receptor (AR) is a major therapeutic target that plays pivotal roles in prostate cancer (PCa) and androgen insensitivity syndromes. We previously proposed that compounds recruited to ligand-binding domain (LBD) surfaces could regulate AR activity in hormone-refractory PCa and discovered several surface modulators of AR function. Surprisingly, the most effective compounds bound preferentially to a surface of unknown function [binding function 3 (BF-3)] instead of the coactivator-binding site [activation function 2 (AF-2)]. Different BF-3 mutations have been identified in PCa or androgen insensitivity syndrome patients, and they can strongly affect AR activity. Further, comparison of AR x-ray structures with and without bound ligands at BF-3 and AF-2 showed structural coupling between both pockets. Here, we combine experimental evidence and molecular dynamic simulations to investigate whether BF-3 mutations affect AR LBD function and dynamics possibly via allosteric conversation between surface sites. Our data indicate that AF-2 conformation is indeed closely coupled to BF-3 and provide mechanistic proof of their structural interconnection. BF-3 mutations may function as allosteric elicitors, probably shifting the AR LBD conformational ensemble toward conformations that alter AF-2 propensity to reorganize into subpockets that accommodate N-terminal domain and coactivator peptides. The induced conformation may result in either increased or decreased AR activity. Activating BF-3 mutations also favor the formation of another pocket (BF-4) in the vicinity of AF-2 and BF-3, which we also previously identified as a hot spot for a small compound. We discuss the possibility that BF-3 may be a protein-docking site that binds to the N-terminal domain and corepressors. AR surface sites are attractive pharmacological targets to develop allosteric modulators that might be alternative lead compounds for drug design.
منابع مشابه
P-231: Androgen Receptor Gene Expression in Azoospermia Men
Background: Androgens are critical steroid hormones in progression of spermatogenesis process and determine the male phenotype that their actions are mediated by the androgen receptor (AR), a member of the nuclear receptor superfamily. In the Androgen receptor, transactivation domain encoded by exon 1, DNA binding domain encoded by exons 2 and 3, hinge region encoded by part of exon 4, and C-te...
متن کاملP-84: Characterization of Androgen Receptor Structure and Nucleocytoplasmic Shuttling of the Rice Field Eel
Background: Androgen receptor (AR) plays a critical role in prostate cancer and male sexual differentiation.Mechanisms by which AR acts and regulations of AR nucleocytoplasmic shuttling are not understood well. Materials and Methods: Degenerate PCR and RACE Cloning of AR Gene; Phylogenetic Analysis and Molecular Modeling;Real-time Fluorescent Quantitative RT-PCR; Northern Blot Hybridization;In ...
متن کاملCharacterization of the two coactivator-interacting surfaces of the androgen receptor and their relative role in transcriptional control.
The androgen receptor interacts with the p160 coactivators via two surfaces, one in the ligand binding domain and one in the amino-terminal domain. The ligand binding domain interacts with the nuclear receptor signature motifs, whereas the amino-terminal domain has a high affinity for a specific glutamine-rich region in the p160s. We here describe the implication of two conserved motifs in the ...
متن کاملSteroid hormone receptors and prostate cancer: role of structural dynamics in therapeutic targeting
Steroid hormone receptors (SHRs) act in cell type- and gene-specific manner through interactions with coregulatory proteins to regulate numerous physiological and pathological processes at the level of gene regulation. Binding of steroid receptor modulator (SRM) ligand leads to allosteric changes in SHR to exert positive or negative effects on the expression of target genes. Due, in part, to th...
متن کاملStructural basis for nuclear receptor corepressor recruitment by antagonist-liganded androgen receptor.
Androgen receptor (AR) recruitment of transcriptional corepressors NCoR and SMRT can be enhanced by antagonists such as mifepristone. This study shows that enhanced NCoR binding to the mifepristone-liganded AR is mediated by the NCoR COOH-terminal N1 CoRNR box and that this selectivity is due to charged residues unique to the COOH-terminal CoRNR boxes of NCoR and SMRT. Significantly, these resi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular endocrinology
دوره 26 7 شماره
صفحات -
تاریخ انتشار 2012